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Role of flexibility in entanglement
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Entanglement is essential to the function of many physical systems. Flexibility and length determine the
extent to which the system can become entangled. Given a perfectly flexible unit-radius tube, several research-
ers have studied the minimum length needed to tie different types of knots. Can one obtain the same configu-
rations with less flexible tubing? Does more flexibility always yield tighter knots? We demonstrate a phase
change in flexibility beyond which more flexibility adds very little entanglement. This level of flexibility is
surprisingly low and appears to have a global bound. Since tensile strength and flexibility act inversely, this
level of flexibility provides the maximal tensile strength for materials that need to pack tightly. This is a basic
design principle that should be observable in nature.
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I. INTRODUCTION energy barrier at specific flexibility values. This is done

through the use of a discretized ropelength funcfibg] that

froioiﬁgzngitelgﬂzrieg?lfh: g;(?ar;gletr(:n:jhselrTE]irs(,)ﬁsr't:JesT:as been shown to finely approximate the mathematical be-
9 poly ' JUShavior of ropelength for smooth curvg8]. This approach

one category of the large number of materials made of WOLan be used to analyze the behavior of tight knots on the

ven or tangled strands.. In general, for a f""’.‘”.‘?”t there is %acroscopic level, such as stiff ropelike materials, or at the
trade-off between tensile strength and erX|b|I|ty—strongermicroscopic level, such as hard bounds on bond angles in

materials(such as wire ropetend to be less flexible. In this olecules or the study of polymer chains. Alternate ap-

paper we ask: how is entanglement affected by fIex'b'“ty'proaches for fully flexible materials have been explored in

We find a phase change. There is a regime in which inz
creased flexibility dramatically increases entanglement posRefS'[‘lTs]' : . .
Consider tying a knot with a piece of steel cable. The

S|b|l_|t|_e_s, b.Ut then, once the_ thresholc_i is passed, INCreasing j erent inflexibility of the material makes it impossible to
flexibility gives small if any increase in entanglement. The

- ._—construct a circular conformation whose ropelength7ig@s
hase change takes place well short of the flexibility required : . T
!‘Oor a tube tgo doublep back on itself. We expectti/hatqbothls the case with a perfectly flexible matejiaGiven a knot-

natural and desianed svstems take advantage of this hamaking material with a uniform radius, we compute the flex-
esigr y - g P! ﬁﬁlity constantf by dividing 27 by the length-to-radius ratio
change—maximizing strength by requiring only the flexibil-

) n t nstruct ircular conformation. The resultin
ity needed for the entanglements of the system. eeded to construct a circular conformatio € resulting

. . .. flexibility values lies in the range € f=1.00. Thus, a fully
ty 5 roquited 1o acheve ~ight” conformations fo various 1Xble Materal has =1.00 and can fuly double back or
entanglement patterns. We find that the flexibility varies—inItse ' exibility of 1=0.50 s the minimum flexibility re-
fact we find patterns that require arbitrarily little flexibility to
tighten—but we find that all patterns, including the most
common mathematical knots, can be tightened to within
1.5% of perfectly tight with a flexibility of 0.50, the phase
change threshold.

II. RESULTS

In this paper, we explore tight knot conformations of ide-
alized rope with different flexibilities. In particular, we find
minimal length-to-radius knot conformations with an infinite

*URL: http://www.anselm.edu/academic/mathematics; Electronic
address: gbuck@anselm.edu

TURL: http:/Aww.mathcs.dug.edurawdon; Electronic address: FIG. 1. A tight Hopf link can be tied with a rope of flexibility
rawdon@mathcs.dug.edu f=0.50.
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quired to construct the tight Hopf link shown in Fig. 1.
The concept of “thick” smooth knots was first defined in to-radius ratio.
Ref. [9] by analyzing the maximal radius of a non-self-

Flexibility

amples of both. For the sake of this paper, we use the length-

One can generaliz¢10] the definition of ropelength

intersecting tube placed about the knot. Given a fixed lengtito model knots with restrictions on how quickly the knot

of perfectly flexible tubing with a perfectly hard shell, two can
behaviors limit the available conformatiof]: the minimal

bend.
=min{fM(K),D(K)/2}, and L(K)=arclengtiiK)/R;(K) for

do this by defining Ri(K)

radius of curvature, denoted here ad,” and the distance 0<f<=1.00. The original definition oR(K) is simply the

between pairs of distinct points whose connecting chord igasef=1.00. We are interested in minimiziig over differ-
perpendicular to the tangents at both of the points, the saant knot types to see how flexibility affects the minimizing

called “doubly critical self-distanceD). In particular, it was
shown that for a fixed knot conformatidg, the maximal

conformations. If we fix the radius of the tube about the knot
to be exactly one, this is equivalent to restricting the mini-

radius of a non self-intersecting tube, the thickness radiusization to knots whose curvature isf. The existence of

denotedR(K), is give

n by R(K)=min{M(K),D(K)/2}. To

minimizing smooth knots at different flexibility values has

eliminate the effect of scale, the length-to-radius ratio,been shown in Ref.11].

known as the ropelength,(K)=arclengtiK)/R(K), is de-

Our knot population consists of eight different knot types.

fined. The concepts d¥l, D, andL are extended rigorously Using the classical notation, the knots afe4, 5;, 8,5, 819,

to polygons in Refs.[1,2]. There is some debate over 8,;, 93 and Qo These knots were chosen to give a variety
whether the ropelength should be the ratio of the length t@f small and larger crossing knots that are alternating and
the diameter or the radius and the literature contains exnonalternating. We also analyzed the rest of the prime knots
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TABLE I. For f values between 0.01 and 0.50, we fit a function through 9 crossing&n additional 76 knojsor f values of 1,
of the forma+b/x to the data. The table contains the values,dd,
L1 00 @andLg 5o values for the eight knots.

3/4, 1/2, 1/4, 1/8, and 1/16. Similar behaviors were ob-
served for the larger knot population; however, we report the
the specifics for the eight knots mentioned above. We re-

Flexibility

Fit a+b/x Min L¢ stricted our attention to equilateral conformations of the dif-
ferent knot types with 64 edges.
a b 1.00 0.50 We use a modified Metropolis Monte Carlo procedure
3, 5.06 1262 33.08 33.29 [12] f_or flowmg the knots to minimizing conformatlons. Our
algorithm begins by choosing two random vertices. We then
4 10.62 16.31 42.69 42.82 compute an upper bound,, for the maximum size of a
51 15.71 14.65 48.26 48.82 crankshaft rotation that yields the same knot type. A random
813 37.40 19.25 78.69 78.95 angled is chosen so that65,,,< < 6,2 @and the crankshaft
819 13.46 18.94 62.44 62.46 rotation is completed. If the new knot has a smaller value for
8 26.59 19.06 68.22 68.67 L, the new knot is ag:_cepted. Otherwise, the new knot is
accepted with probability exp-AL¢)/k], where k>0 de-
939 47.03 22.63 86.48 87.47 .
) 5 77 7 creases to 0 through the computations.
949 32.30 0.98 90 53 For each of these knots, the minimization algorithm was
run for f values between 0.01 and 1.00 by increments of
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818 81, 930, and 9q knots, the phase change is at 0.50. For
the 84 knot, the phase change appears to be at a value
slightly less than 0.50. We concentrate on this phenomenon
later in this paper. The data shows that a flexibility greater
than 0.50 results in little or no improvement in the minimum
ropelength. In other words, increasing the flexibility beyond
0.50 results in a smalif any) increase of entanglement pos-
sibilities. A flexibility of 0.50 is sufficient for tying the tight
Hopf link seen in Fig. 1 and to wrap a circle of radius two
about a straight tube of radius one. In a tight knot or link
regime, we expect the most tight packing to resemble the
packing of the Hopf link, and thus, a flexibility of 0.50 is
sufficient for pulling the knot tight.

Pieranskiet al. [14] determined that a flexibility of 0.90
appears to be sufficient to tie the tightest trefoil. They also
considered length shortening evolutions and have observed
that the appearance of self-contact changes the rate of evo-
lution. More recent studiefl5] suggest that the flexibility

FIG. 6. The packed Hopf links exhibit a family of links for required to tie ropelength minima may be even higher. Thus,
which arbitrarily little flexibility is sufficient to tie a ropelength- there may be two phase changes for each knot type with the
minimized conformation. other phase change occurring at the minimum flexibility suf-

ficient to tie a ropelength minimum. Our computations sug-
0.01. We used SchareinisNOTPLOT [13] to create a base gest that the first phase change occurs at a flexibility value
equilateral conformation of each knot type and used this conalways <0.50. To date, there are no analytic solutions for
formation as a common starting point for each of the valuesopelength minima except for the trivial case of the unknot
of f. The graph ol ; versusf should be nonincreasing since and for a special class of lin46]. For the class of links, a
Lt (K)=Ly,(K) when f;<f, for any fixed conformatiork.  flexibility of 0.50 is sufficient to tie the tightest conforma-
In other words, a more flexible material can always yield thetions. When minimizing conformations are determined for
same conformation realized using a less flexible material. Wenore knots and links, we will know where, and if, the second
could smooth the data by using previously computed conforphase change occurs, although it appears that these values
mations as starting conformations. However, so as not to biasill have to be determined distinctly for each knot and link.
our computations, we decided to use a common starting cori-urthermore, Cantarellet al.[17] have shown that the tight-
figuration for each knot type. est clasp needs full flexibilityi.e., f=1.00 to obtain a criti-

The eight knots exhibited similar behavior. For value$ of cal state(which appears to be minimahnd the Borromean
between 0.50 and 1.00, the minimizing conformationsland rings require a flexibility strictly greater than 0.50 to obtain a
values were nearly identical. Figure 2 shows the entire graphritical state. However, the length improvement in the tight
of the flexibility f versus minimalL; and Fig. 3 shows a clasp fromf=0.50 to f=1.00 is approximately 0.17%. In
graph for flexibility between 0.30 and 1.00. There is a clearusing the full flexibility, the clasp loses some self contact
phase change that occurs for each of the knots where thmints, which in the case of tying real knots may make the
graph changes to a roughly horizontal line. For the43, 5;, knot more likely to slip. In our computations, the difference
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Note that the & knot, also a torus knot, has a nearly
horizontal graph from 0.45 to 1.00. Thus, the, &not re-
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quires even less flexibility from the knot-making material
than the other knots analyzed.

@ @ @ This suggests a natural question: are there knots or links

£=0.05 £=0.10 £=0.25 £=1.00 for which arbitrarily low flexibility is sufficient to tie a
334.51 173.77 76.02 42.69 ropelength-minimized conformation? The answer is yes.
Consider a family of packed Hopf lin4.8], an example of
which is shown in Fig. 7. If we fix the radius of each strand
at one and increase the number of strands in each of the
packed loops, the circle formed by a single strand within a
packed loop will have larger and larger radii. Thus, the cur-
£20.05 £20.10 £20.25 £=1.00 vature of each strand will approach zero as the number of
283.95 157.10 78.72 48.26 strands increases.

The 84is a(3,4) torus knot, meaning that the knot can be
formed on a torus so that it wraps three times around the
longitude and four times around the meridian. Then+1)

between the minimal ropelength usifig 0.50 andf=1.00  torus knots are nonalternating fae=3. We conjecture that
was at worst 1.5%. Thus, we propose that natural material@sn— =, the ropelength-minimizeth,n+1) torus knots can
will forego the minimal tightening gain to make the material be made with arbitrarily low flexibility. This is supported by
stronger. Fig. 8. We ropelength-minimized tha,n+1) torus knots for
For f values 0< f=<0.50, the graphs can be approximatedn=2,3,4,5,6 forf=0.01 to f=1.00 by increments of 0.01.
by a function of the forma+b/x. One might assume that the Notice that as increases, the graphs are horizontal for more
value of a would be equal to the limiting constant value flexibility values.
observed fromf=0.50 to f=1.00. However, this is not the
case. Table | shows that the valueaofor each knot is much Ill. DISCUSSION
different than the limiting value from 0.50 to 1.00. In fact, . ) ) » .
there appears to be no simple relationship between these val- Intuitively, one would imagine .that additional flexibility
ues. Figure 4 shows the fitting curves of the faamb/x for ~ Would be advantageous in tying tight knots. To some extent
a few of the knots. The fitting curves are very close togethefiS 1S true: a perfectly flexible material will have the broad-
so we chose 3 8,,, and , as representative knots. est range of possible co_nformatlons. However, fle>§|b|I|ty
Furthermore, the graphs of 4nd 5 cross neaf=0.20  COMes at the cost of tensile strength. and other_ phys]cal at-
(see Fig. 5. As seen in Fig. 6, the 4approaches a more trlbytes. We hayg shown that a flexibility on.SO is sufficient
three-dimensional presentation &s-0 while the 5 ap- to _tle nearly m|n|m_a_l ropelength conformations. Thus, one
proaches a planar conformation. Thekdiot is a twist knot, ~9@nS Very little addlt_lonal ent_angler_nent V\_/he_n the material is
that is, it can be constructed as a series of twists from twénore flexible. This is a basic design principle for tube or
parallel segments with the ends clasped together. On tH@Pelike materials.
other hand, thg Hknot is a torus knot, that is, it can be ACKNOWLEDGMENTS
constructed to lie on a torus. In our experiments, twist knots
tended to more three-dimensional conformations while torus G.B. was supported by the National Science Foundation
knots approached planar conformations resembling interunder Grant No. 0107747. E.J.R. was supported by the Na-
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FIG. 8. Minimal conformations of the,4and § knots for vari-
ous values of.

the 5 is smaller ag — 0. simulations.
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