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Entanglement is essential to the function of many physical systems. Flexibility and length determine the
extent to which the system can become entangled. Given a perfectly flexible unit-radius tube, several research-
ers have studied the minimum length needed to tie different types of knots. Can one obtain the same configu-
rations with less flexible tubing? Does more flexibility always yield tighter knots? We demonstrate a phase
change in flexibility beyond which more flexibility adds very little entanglement. This level of flexibility is
surprisingly low and appears to have a global bound. Since tensile strength and flexibility act inversely, this
level of flexibility provides the maximal tensile strength for materials that need to pack tightly. This is a basic
design principle that should be observable in nature.
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I. INTRODUCTION

Polymer materials derive a great deal of their properties
from the entanglement of the polymer strands. This is just
one category of the large number of materials made of wo-
ven or tangled strands. In general, for a filament there is a
trade-off between tensile strength and flexibility—stronger
materials(such as wire rope) tend to be less flexible. In this
paper we ask: how is entanglement affected by flexibility?
We find a phase change. There is a regime in which in-
creased flexibility dramatically increases entanglement pos-
sibilities, but then, once the threshold is passed, increasing
flexibility gives small if any increase in entanglement. The
phase change takes place well short of the flexibility required
for a tube to double back on itself. We expect that both
natural and designed systems take advantage of this phase
change—maximizing strength by requiring only the flexibil-
ity needed for the entanglements of the system.

We study this phenomenon by asking how much flexibil-
ity is required to achieve “tight” conformations for various
entanglement patterns. We find that the flexibility varies—in
fact we find patterns that require arbitrarily little flexibility to
tighten—but we find that all patterns, including the most
common mathematical knots, can be tightened to within
1.5% of perfectly tight with a flexibility of 0.50, the phase
change threshold.

II. RESULTS

In this paper, we explore tight knot conformations of ide-
alized rope with different flexibilities. In particular, we find
minimal length-to-radius knot conformations with an infinite

energy barrier at specific flexibility values. This is done
through the use of a discretized ropelength function[1,2] that
has been shown to finely approximate the mathematical be-
havior of ropelength for smooth curves[3]. This approach
can be used to analyze the behavior of tight knots on the
macroscopic level, such as stiff ropelike materials, or at the
microscopic level, such as hard bounds on bond angles in
molecules or the study of polymer chains. Alternate ap-
proaches for fully flexible materials have been explored in
Refs.[4–8].

Consider tying a knot with a piece of steel cable. The
inherent inflexibility of the material makes it impossible to
construct a circular conformation whose ropelength is 2p (as
is the case with a perfectly flexible material). Given a knot-
making material with a uniform radius, we compute the flex-
ibility constantf by dividing 2p by the length-to-radius ratio
needed to construct a circular conformation. The resulting
flexibility values lies in the range 0, f ø1.00. Thus, a fully
flexible material hasf =1.00 and can fully double back on
itself. A flexibility of f =0.50 is the minimum flexibility re-
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FIG. 1. A tight Hopf link can be tied with a rope of flexibility
f =0.50.
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quired to construct the tight Hopf link shown in Fig. 1.
The concept of “thick” smooth knots was first defined in

Ref. [9] by analyzing the maximal radius of a non-self-
intersecting tube placed about the knot. Given a fixed length
of perfectly flexible tubing with a perfectly hard shell, two
behaviors limit the available conformations[3]: the minimal
radius of curvature, denoted here as “M,” and the distance
between pairs of distinct points whose connecting chord is
perpendicular to the tangents at both of the points, the so-
called “doubly critical self-distance”sDd. In particular, it was
shown that for a fixed knot conformationK, the maximal
radius of a non self-intersecting tube, the thickness radius
denotedRsKd, is given by RsKd=minhMsKd ,DsKd /2j. To
eliminate the effect of scale, the length-to-radius ratio,
known as the ropelength,LsKd=arclengthsKd /RsKd, is de-
fined. The concepts ofM, D, andL are extended rigorously
to polygons in Refs.[1,2]. There is some debate over
whether the ropelength should be the ratio of the length to
the diameter or the radius and the literature contains ex-

amples of both. For the sake of this paper, we use the length-
to-radius ratio.

One can generalize[10] the definition of ropelength
to model knots with restrictions on how quickly the knot
can bend. We do this by defining RfsKd
=minhfMsKd ,DsKd /2j, and LfsKd=arclengthsKd /RfsKd for
0, f ø1.00. The original definition ofRsKd is simply the
casef =1.00. We are interested in minimizingLf over differ-
ent knot types to see how flexibility affects the minimizing
conformations. If we fix the radius of the tube about the knot
to be exactly one, this is equivalent to restricting the mini-
mization to knots whose curvature isøf. The existence of
minimizing smooth knots at different flexibility values has
been shown in Ref.[11].

Our knot population consists of eight different knot types.
Using the classical notation, the knots are 31, 41, 51, 818, 819,
821, 939, and 949. These knots were chosen to give a variety
of small and larger crossing knots that are alternating and
nonalternating. We also analyzed the rest of the prime knots

FIG. 2. Minimum Lf values
for flexibilities between 0.01 and
1.00.

FIG. 3. Minimum Lf values
for flexibilities between 0.30 and
1.00. Notice the phase change at
0.50.
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through 9 crossings(an additional 76 knots) for f values of 1,
3/4, 1/2, 1/4, 1/8, and 1/16. Similar behaviors were ob-
served for the larger knot population; however, we report the
the specifics for the eight knots mentioned above. We re-
stricted our attention to equilateral conformations of the dif-
ferent knot types with 64 edges.

We use a modified Metropolis Monte Carlo procedure
[12] for flowing the knots to minimizing conformations. Our
algorithm begins by choosing two random vertices. We then
compute an upper boundumax for the maximum size of a
crankshaft rotation that yields the same knot type. A random
angleu is chosen so that −umax,u,umax and the crankshaft
rotation is completed. If the new knot has a smaller value for
Lf, the new knot is accepted. Otherwise, the new knot is
accepted with probability expfs−DLfd /kg, where k.0 de-
creases to 0 through the computations.

For each of these knots, the minimization algorithm was
run for f values between 0.01 and 1.00 by increments of

TABLE I. For f values between 0.01 and 0.50, we fit a function
of the forma+b/x to the data. The table contains the values ofa, b,
L1.00, andL0.50 values for the eight knots.

Fit a+b/x Min Lf

a b 1.00 0.50

31 8.06 12.62 33.08 33.29

41 10.62 16.31 42.69 42.82

51 15.71 14.65 48.26 48.82

818 37.40 19.25 78.69 78.95

819 13.46 18.94 62.44 62.46

821 26.59 19.06 68.22 68.67

939 47.03 22.63 86.48 87.47

949 32.30 20.98 77.90 77.53

FIG. 4. The graphs of three of
the knots with their fitting curves.

FIG. 5. The graphs of the 41

and 51 knots cross nearf =0.20.
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0.01. We used Scharein’sKNOTPLOT [13] to create a base
equilateral conformation of each knot type and used this con-
formation as a common starting point for each of the values
of f. The graph ofLf versusf should be nonincreasing since
Lf1

sKdùLf2
sKd when f1, f2 for any fixed conformationK.

In other words, a more flexible material can always yield the
same conformation realized using a less flexible material. We
could smooth the data by using previously computed confor-
mations as starting conformations. However, so as not to bias
our computations, we decided to use a common starting con-
figuration for each knot type.

The eight knots exhibited similar behavior. For values off
between 0.50 and 1.00, the minimizing conformations andLf
values were nearly identical. Figure 2 shows the entire graph
of the flexibility f versus minimalLf and Fig. 3 shows a
graph for flexibility between 0.30 and 1.00. There is a clear
phase change that occurs for each of the knots where the
graph changes to a roughly horizontal line. For the 31, 41, 51,

818, 821, 939, and 949 knots, the phase change is at 0.50. For
the 819 knot, the phase change appears to be at a value
slightly less than 0.50. We concentrate on this phenomenon
later in this paper. The data shows that a flexibility greater
than 0.50 results in little or no improvement in the minimum
ropelength. In other words, increasing the flexibility beyond
0.50 results in a small(if any) increase of entanglement pos-
sibilities. A flexibility of 0.50 is sufficient for tying the tight
Hopf link seen in Fig. 1 and to wrap a circle of radius two
about a straight tube of radius one. In a tight knot or link
regime, we expect the most tight packing to resemble the
packing of the Hopf link, and thus, a flexibility of 0.50 is
sufficient for pulling the knot tight.

Pieranskiet al. [14] determined that a flexibility of 0.90
appears to be sufficient to tie the tightest trefoil. They also
considered length shortening evolutions and have observed
that the appearance of self-contact changes the rate of evo-
lution. More recent studies[15] suggest that the flexibility
required to tie ropelength minima may be even higher. Thus,
there may be two phase changes for each knot type with the
other phase change occurring at the minimum flexibility suf-
ficient to tie a ropelength minimum. Our computations sug-
gest that the first phase change occurs at a flexibility value
always ø0.50. To date, there are no analytic solutions for
ropelength minima except for the trivial case of the unknot
and for a special class of links[16]. For the class of links, a
flexibility of 0.50 is sufficient to tie the tightest conforma-
tions. When minimizing conformations are determined for
more knots and links, we will know where, and if, the second
phase change occurs, although it appears that these values
will have to be determined distinctly for each knot and link.
Furthermore, Cantarellaet al. [17] have shown that the tight-
est clasp needs full flexibility(i.e., f =1.00) to obtain a criti-
cal state(which appears to be minimal) and the Borromean
rings require a flexibility strictly greater than 0.50 to obtain a
critical state. However, the length improvement in the tight
clasp from f =0.50 to f =1.00 is approximately 0.17%. In
using the full flexibility, the clasp loses some self contact
points, which in the case of tying real knots may make the
knot more likely to slip. In our computations, the difference

FIG. 6. The packed Hopf links exhibit a family of links for
which arbitrarily little flexibility is sufficient to tie a ropelength-
minimized conformation.

FIG. 7. The amount of flex-
ibility needed to tie a ropelength-
minimizedsn,n+1d torus knot de-
creases asn increases.
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between the minimal ropelength usingf =0.50 andf =1.00
was at worst 1.5%. Thus, we propose that natural materials
will forego the minimal tightening gain to make the material
stronger.

For f values 0, f ø0.50, the graphs can be approximated
by a function of the forma+b/x. One might assume that the
value of a would be equal to the limiting constant value
observed fromf =0.50 to f =1.00. However, this is not the
case. Table I shows that the value ofa for each knot is much
different than the limiting value from 0.50 to 1.00. In fact,
there appears to be no simple relationship between these val-
ues. Figure 4 shows the fitting curves of the forma+b/x for
a few of the knots. The fitting curves are very close together
so we chose 31, 821, and 939 as representative knots.

Furthermore, the graphs of 41 and 51 cross nearf =0.20
(see Fig. 5). As seen in Fig. 6, the 41 approaches a more
three-dimensional presentation asf →0 while the 51 ap-
proaches a planar conformation. The 41 knot is a twist knot,
that is, it can be constructed as a series of twists from two
parallel segments with the ends clasped together. On the
other hand, the 51 knot is a torus knot, that is, it can be
constructed to lie on a torus. In our experiments, twist knots
tended to more three-dimensional conformations while torus
knots approached planar conformations resembling inter-
locked circles. In Table I, the value ofb for the 41 is 16.31
and for the 51 is 14.65, which implies that the growth rate for
the 51 is smaller asf →0.

Note that the 819 knot, also a torus knot, has a nearly
horizontal graph from 0.45 to 1.00. Thus, the 819 knot re-
quires even less flexibility from the knot-making material
than the other knots analyzed.

This suggests a natural question: are there knots or links
for which arbitrarily low flexibility is sufficient to tie a
ropelength-minimized conformation? The answer is yes.
Consider a family of packed Hopf links[18], an example of
which is shown in Fig. 7. If we fix the radius of each strand
at one and increase the number of strands in each of the
packed loops, the circle formed by a single strand within a
packed loop will have larger and larger radii. Thus, the cur-
vature of each strand will approach zero as the number of
strands increases.

The 819 is as3,4d torus knot, meaning that the knot can be
formed on a torus so that it wraps three times around the
longitude and four times around the meridian. Thesn,n+1d
torus knots are nonalternating fornù3. We conjecture that
asn→`, the ropelength-minimizedsn,n+1d torus knots can
be made with arbitrarily low flexibility. This is supported by
Fig. 8. We ropelength-minimized thesn,n+1d torus knots for
n=2,3,4,5,6 forf =0.01 to f =1.00 by increments of 0.01.
Notice that asn increases, the graphs are horizontal for more
flexibility values.

III. DISCUSSION

Intuitively, one would imagine that additional flexibility
would be advantageous in tying tight knots. To some extent
this is true: a perfectly flexible material will have the broad-
est range of possible conformations. However, flexibility
comes at the cost of tensile strength and other physical at-
tributes. We have shown that a flexibility of 0.50 is sufficient
to tie nearly minimal ropelength conformations. Thus, one
gains very little additional entanglement when the material is
more flexible. This is a basic design principle for tube or
ropelike materials.
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